← BackBn≥m is the number of partitions of an n element set such that every block contains at least m elements.
- B0≥m=1
- Bn≥m=0 for m>n>0
- Bn≥k=Bn≥k−1−i=1∑⌊k−1n⌋(k−1)!i!(n−(k−1)i)!n!Bn−(k−1)i≥k
n=0∑∞n!Bn≥mxn=exp(exp(x)−i=0∑m−1i!xi)
Where Bn is a Bell number and Bn≤m is a restricted Bell number
- Bn=i=0∑n(in)⋅Bi≤m⋅Bn−i≥m+1
- Bn≥k=Bn−i=1∑n(in)Bi≤k−1Bn−i≥k
- i=0∑n(in)Bi≥2=Bn
- Bn=Bn≥1
Moll, Ramirez, Villamizar: Combinatorial and Arithmetical Properties of the Restricted and Associated Bell and Factorial Numbers
Comments
Loading comments...