← Back to the home page

Doubly ordered (S, r)-partitions

Dn,S,rD_{n, S, r} is the number of partitions of an (n+r)(n+r) element set into ordered lists, where the order of the lists and of the elements in the lists matter, such that each list has cardinality belonging to some set SS, and there are rr distinguished elements in separate lists.

Formulas

Dn,S,r=k=0nk!nkS,r\mathcal{D}_{n, S, r} = \sum_{k=0}^n k! \left\lfloor {n \atop k} \right\rfloor_{S, r} Dn,S,r=r!2r+1=012(r+)k=0nnkS,r()k\mathcal{D}_{n, S, r} = \frac{r!}{2^{r+1}} \sum_{\ell=0}^\infty \frac{1}{2^\ell} \binom{r+\ell}{\ell} \sum_{k=0}^n \left\lfloor {n \atop k} \right\rfloor_{S, r} (\ell)_k

Recurrence

Dn,S,r=sS(ns)sDns,S,r+rsS(ns1)sDn(s1),S,r1\mathcal{D}_{n, S, r} = \sum_{s \in S} \binom{n}{s} s \mathcal{D}_{n-s, S, r} + r \sum_{s \in S} \binom{n}{s-1} s \mathcal{D}_{n-(s-1), S, r-1}

Generating Functions

Exponential Generating Function

n=0Dn,S,rxnn!=r!(1sSxs)r+1(sSsxs1)r\sum_{n=0}^\infty \mathcal{D}_{n, S, r} \frac{x^n}{n!} = \frac{r!}{\left( 1 - \sum_{s \in S} x^s \right)^{r+1}} \cdot \left( \sum_{s \in S} s x^{s-1} \right)^r

References

Bényi, Méndez, Ramirez: GENERALIZED ORDERED SET PARTITIONS

Comments

Loading comments...