← Back to the home page

Lah number

nk\left\lfloor {n \atop k} \right\rfloor is the number of partitions of an nn element set into kklists, where a list means a non-empty, linearly ordered subset.

A008297 on the OEIS

Recurrence

Formulas

Generating Function

nknkxnn!=1k!(x1x)k\sum_{n\geq k} \left\lfloor {n \atop k} \right\rfloor\frac{x^n}{n!} = \frac{1}{k!}\left( \frac{x}{1-x} \right)^k

Relation to Stirling numbers

nk=j=kn[nj]{jk}\left\lfloor {n \atop k} \right\rfloor = \sum_{j=k}^n \left[{n\atop j}\right] \left\{{j\atop k}\right\}

Source

Wikipedia https://en.wikipedia.org/wiki/Lah_number

Comments

Loading comments...