← Back

r-Bell number

Bn,rB_{n, r} is the number of ways to partition an (n+r)(n+r) element set into blocks, such that the first rr elements are in different blocks.

Cases

Formula

Bn,r=k=0n(i=0n(ni)(ik)rni)B_{n,r} = \sum_{k=0}^n \left( \sum_{i=0}^n \binom{n}{i} \binom{i}{k} r^{n-i} \right)Bn,r=1ek=0(k+r)nk!B_{n,r} = \frac{1}{e} \sum_{k=0}^\infty \frac{(k + r)^n}{k!}Bn,r=2n!πeIm0πeeiθereiθsin(nθ)dθB_{n,r} = \frac{2n!}{\pi e} \, \mathrm{Im} \int_{0}^\pi e^{e^{i\theta}} e^{r e^{i\theta}} \sin(n\theta) \, d\theta

Recurrence

Bn,r=Bn1,r+1+rBn1,rB_{n,r} = B_{n-1,r+1} + r B_{n-1,r}Bn,r=rBn1,r+k=0n1(n1k)Bk,rB_{n,r} = r B_{n-1,r} + \sum_{k=0}^{n-1} \binom{n-1}{k} B_{k,r}Bn,r+1=k=0n(nk)Bk,rB_{n,r+1} = \sum_{k=0}^n \binom{n}{k} B_{k,r}Bn,r=k=0n(nk)(1)nkBk,r+1B_{n,r} = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} B_{k,r+1}

Generating functions

n=0Bn,rznn!=eez1+rz\sum_{n=0}^\infty \frac{B_{n,r} z^n}{n!} = e^{e^z-1 + rz}

References

Mező: The r-Bell Numbers

Comments

Loading comments...