← Back to the home page

r-Lah numbers

nkr\left\lfloor {n \atop k} \right\rfloor_r is the number of partitions of an nn element set into kklists, where a list means a non-empty, linearly ordered subset such that rr distinguished elements are in distinct ordered blocks.

Cases

Recurrence

Formulas

Generating Function

n=knkrxnn!=1k!(x1x)k(11x)2r\sum_{n=k}^\infty \left\lfloor {n \atop k} \right\rfloor_r \frac{x^n}{n!} = \frac{1}{k!} \left( \frac{x}{1-x} \right)^k \left( \frac{1}{1-x} \right)^{2r}

Source

Nyul, Rácz: The r-Lah numbers

Comments

Loading comments...