<-- Back to the home page

r-Stirling Numbers of the Second Kind

{nk}r\left\{ \begin{matrix} n\\ k \end{matrix} \right\}_{r}

is the number of ways of partitioning the set {1,2,...,n}\{1, 2, ..., n\} into kk subsets such that {1,2,...,r}\{1, 2, ..., r\} are in different blocks.

Recurrence

The r-Stirling numbers of the second kind follow the same recurrence as the normal Stirling numbers of the second kind, but with different starting parameters.

{nk}r=0 for n<r\left\{ \begin{matrix} n\\ k \end{matrix} \right\}_{r} = 0 \quad \text{ for } n < r

{nk}r=1 for n=m=r\left\{ \begin{matrix} n\\ k \end{matrix} \right\}_{r} = 1 \quad \text{ for } n = m = r

{nk}r=k{n1k}+{n1k1} for n>r\left\{{n\atop k}\right\}_r = k \left\{{ n-1 \atop k }\right\} + \left\{{n-1\atop k-1}\right\} \quad \text{ for } n > r

Extra:

{nk}r={nk}r1(r1){n1k}r1 for nr1\left\{{n\atop k}\right\}_r = \left\{{n\atop k}\right\}_{r-1} - (r - 1)\left\{{n-1\atop k}\right\}_{r-1} \quad \text{ for } n \geq r \geq 1

Formulas

This formula is from Broder's article (linked below). There might be more formulas in it, and maybe in the OEIS entries too.

{nm}r=k(nrk){kmr}rnrk\left\{ {n \atop m} \right\}_r = \sum_k \binom{n-r}{k} \left\{ {k \atop m-r} \right\} r^{n-r-k}

https://math.stackexchange.com/questions/4371769/range-of-r-parameter-of-second-kind-r-stirling-numbers gives:

{nk}r=i=0n(ni){ik}rni\left\{ {n \atop k} \right\}_r = \sum_{i=0}^{n} \binom{n}{i} \left\{ {i \atop k} \right\} r^{n-i}

Be careful that there might be a mismatch in notation. It seems that the formula above produces

{n+rk+r}r=(...)\left\{ {n+r \atop k+r} \right\}_r = (...)

Identities

{nn}r=1 for nr\left\{{n\atop n}\right\}_r = 1 \text{ for } n \geq r

{nm}r=0 for m>n\left\{{n\atop m}\right\}_r = 0 \text{ for } m > n

{nr}r=rnr for nr\left\{{n\atop r}\right\}_r = r ^{n - r} \text{ for } n \geq r

Generating functions

There may be some errors from copying these functions from the original paper. The notation for falling/rising factorials isn't too clear. See the article below for the originals.

Exponential generating function

k{k+rm+r}rzkk!={1m!erz(ez1)m,if m0,0,otherwise.\sum_k \left\{ {k+r \atop m+r} \right\}_r \frac{z^k}{k!} = \begin{cases} \frac{1}{m!} e^{rz} (e^z - 1)^m, & \text{if } m \geq 0, \\ 0, & \text{otherwise}. \end{cases}

Ordinary generating functions

k{km}rzk={zm(1rz)(1(r+1)z)(1mz),if mr0,0,otherwise.\sum_k \left\{ {k \atop m} \right\}_r z^k = \begin{cases} \frac{z^m}{(1-rz)(1-(r+1)z) \cdots (1-mz)}, & \text{if } m \geq r \geq 0, \\ 0, & \text{otherwise}. \end{cases}

k{n+rk+r}rxk=(x+r)n,n0.\sum_k \left\{ {n+r \atop k+r} \right\}_r x^{\underline{k}} = (x+r)^n, \quad n \geq 0.

Double generating function

k,m{k+rm+r}rzkk!tm=exp(t(ez1)+rz).\sum_{k,m} \left\{ {k+r \atop m+r} \right\}_r \frac{z^k}{k!} t^m = \exp(t(e^z - 1) + rz).

Articles

Anderi Broder: The r-Stirling numbers