← Back to the home page

r-Stirling numbers of the second kind

{nk}r\left\{\begin{matrix} n \\ k \end{matrix}\right\}_{r} is the number of ways of partitioning an nn element set into kk subsets such that rr distinguished elements are in different blocks.

Cases

Recurrence

Formulas

{nm}r=k(nrk){kmr}rnrk\left\{ {n \atop m} \right\}_r = \sum_k \binom{n-r}{k} \left\{ {k \atop m-r} \right\} r^{n-r-k}

Identities

See here

Generating Functions

Exponential Generating Function

k{k+rm+r}rzkk!={1m!erz(ez1)m,if m0,0,otherwise.\sum_k \left\{ {k+r \atop m+r} \right\}_r \frac{z^k}{k!} = \begin{cases} \frac{1}{m!} e^{rz} (e^z - 1)^m, & \text{if } m \geq 0, \\ 0, & \text{otherwise.} \end{cases}

Ordinary Generating Functions

k{km}rzk={zm(1rz)(1(r+1)z)(1mz),if mr0,0,otherwise.\sum_k \left\{ {k \atop m} \right\}_r z^k = \begin{cases} \frac{z^m}{(1-rz)(1-(r+1)z)\cdots(1-mz)}, & \text{if } m \geq r \geq 0, \\ 0, & \text{otherwise.} \end{cases}

k{n+rk+r}rxk=(x+r)n,n0.\sum_k \left\{ {n+r \atop k+r} \right\}_r x^{\underline{k}} = (x+r)^n, \quad n \geq 0.

Double Generating Function

k,m{k+rm+r}rzkk!tm=exp(t(ez1)+rz)\sum_{k,m} \left\{ {k+r \atop m+r} \right\}_r \frac{z^k}{k!} t^m = \exp(t(e^z - 1) + rz)

Articles

Andrei Broder: The r-Stirling numbers

Comments

Loading comments...