← Back to the home page{nk}r is the number of ways of partitioning an n element set into k subsets such that r distinguished elements are in different blocks.
- {nk}r=0for n<r
- {nk}r=1for n=k=r
- {nk}r=k{n−1k}+{n−1k−1}
- {nk}r={nk}r−1−(r−1){n−1k}r−1
{mn}r=k∑(kn−r){m−rk}rn−r−k
See
here k∑{m+rk+r}rk!zk={m!1erz(ez−1)m,0,if m≥0,otherwise.
k∑{mk}rzk={(1−rz)(1−(r+1)z)⋯(1−mz)zm,0,if m≥r≥0,otherwise.
k∑{k+rn+r}rxk=(x+r)n,n≥0.
k,m∑{m+rk+r}rk!zktm=exp(t(ez−1)+rz)
Andrei Broder: The r-Stirling numbers
Comments
Loading comments...