← Back to the home page

Restricted r-Stirling numbers

{nk}m,r\left\{ {n \atop k} \right\}_{\leq m, r} is the number of partitions of an (n+r)(n + r) element set into (k+r)(k + r) subsets, such that rr distinguished elements have to be in distinct blocks, and each block has at most mm blocks.

Recurrence

{nk}m,r=i=0m1(n1i){ni1k1}m,r+ri=0m2(n1i){ni1k}m,r1.\left\{ {n \atop k} \right\}_{\leq m, r} = \sum_{i=0}^{m-1} \binom{n-1}{i} \left\{ {n-i-1 \atop k-1} \right\}_{\leq m, r} + r \sum_{i=0}^{m-2} \binom{n-1}{i} \left\{ {n-i-1 \atop k} \right\}_{\leq m, r-1}. {nk}m,r={n1k1}m,r+(k+r){n1k}m,rr(n1m1){nmk}m,r1(n1m){n1mk1}m,r.\left\{ {n \atop k} \right\}_{\leq m, r} = \left\{ {n-1 \atop k-1} \right\}_{\leq m, r} + (k + r) \left\{ {n-1 \atop k} \right\}_{\leq m, r} - r \binom{n-1}{m-1} \left\{ {n-m \atop k} \right\}_{\leq m, r-1} - \binom{n-1}{m} \left\{ {n-1-m \atop k-1} \right\}_{\leq m, r}.

Generating Functions

n=kkm+(m1)r{nk}m,rtnn!=1k!(1+t+t22!++tm1(m1)!)r(t+t22!++tmm!)k.\sum_{n=k}^{km+(m-1)r} \left\{ {n \atop k} \right\}_{\leq m, r} \frac{t^n}{n!} = \frac{1}{k!} \left( 1 + t + \frac{t^2}{2!} + \cdots + \frac{t^{m-1}}{(m-1)!} \right)^r \left( t + \frac{t^2}{2!} + \cdots + \frac{t^m}{m!} \right)^k.

References

Komatsu and Ramirez: Generalized poly-Cauchy and poly-Bernoulli numbers by using incomplete r-Stirling numbers

Comments

Loading comments...