← Back to the home page

(S, r)-Bell number

Bn,S,rB_{n, S, r} is the number of set partitions of an (n+r)(n+r) element set into blocks, such that each block has cardinality belonging to some set SS, and there are rr distinguished elements in separate blocks.

Formulas

Bn,S,r=k=0n{nk}S,rB_{n, S, r} = \sum_{k=0}^n \left\{ {n \atop k} \right\}_{S, r}

Recurrence

Bn,S,r+1=sS(ns1)Bns+1,S,rB_{n, S, r+1} = \sum_{s \in S} \binom{n}{s-1} B_{n-s+1, S, r} (n+r)Bn,S,r=sSs(ns)Bns,S,r+rsSs(ns1)Bns+1,S,r1(n + r) B_{n, S, r} = \sum_{s \in S} s \binom{n}{s} B_{n-s, S, r} + r \sum_{s \in S} s \binom{n}{s-1} B_{n-s+1, S, r-1} Bn+1,S,r=Bn,S,r+1+rsS(ns2)Bns+2,S,r1B_{n+1, S, r} = B_{n, S, r+1} + r \sum_{s \in S} \binom{n}{s-2} B_{n-s+2, S, r-1}

Generating Function

n=0Bn,S,rxnn!=(i1xki1(ki1)!)rexp(i1xkiki!)\sum_{n=0}^\infty B_{n, S, r} \frac{x^n}{n!} = \left( \sum_{i \geq 1} \frac{x^{k_i-1}}{(k_i-1)!} \right)^r \exp\left( \sum_{i \geq 1} \frac{x^{k_i}}{k_i!} \right)

S={k1,k2,k2,...}S = \{k_1, k_2, k_2, ...\}

References

Bényi, Méndez, Ramirez, Wakhare: RESTRICTED r-STIRLING NUMBERS AND THEIR COMBINATORIAL APPLICATIONS

Comments

Loading comments...