← Back to the home page

(S, r)-Lah numbers

nkS,r\left\lfloor {n \atop k} \right\rfloor_{S, r} is the number of partitions of an (n+r)(n + r) element set into (k+r)(k + r) lists, where a list means a non-empty, linearly ordered subset, such that rr distinguished elements have to be in distinct ordered blocks, and each block has cardinality belonging to some set SS.

Recurrence

n+1kS,r=nk1S,r+1+rsSs!(ns2)ns+2kS,r1\left\lfloor {n+1 \atop k} \right\rfloor_{S, r} = \left\lfloor {n \atop k-1} \right\rfloor_{S, r+1} + r \sum_{s \in S} s! \binom{n}{s-2} \left\lfloor {n-s+2 \atop k} \right\rfloor_{S, r-1}

Identitites

knkS,r=sSs!(ns)nsk1S,rk \left\lfloor {n \atop k} \right\rfloor_{S, r} = \sum_{s \in S} s! \binom{n}{s} \left\lfloor {n-s \atop k-1} \right\rfloor_{S, r} rnkS,r=rsSs!(ns1)ns+1kS,r1r \left\lfloor {n \atop k} \right\rfloor_{S, r} = r \sum_{s \in S} s! \binom{n}{s-1} \left\lfloor {n-s+1 \atop k} \right\rfloor_{S, r-1} (n+r)nkS,r=sSs!s(ns)nsk1S,r+rsSs!s(ns1)ns+1kS,r1(n + r) \left\lfloor {n \atop k} \right\rfloor_{S, r} = \sum_{s \in S} s! s \binom{n}{s} \left\lfloor {n-s \atop k-1} \right\rfloor_{S, r} + r \sum_{s \in S} s! s \binom{n}{s-1} \left\lfloor {n-s+1 \atop k} \right\rfloor_{S, r-1}

Generating Function

n=knkS,rxnn!=1k!(sSxs)k(sSsxs1)r\sum_{n=k}^\infty \left\lfloor {n \atop k} \right\rfloor_{S, r} \frac{x^n}{n!} = \frac{1}{k!} \left( \sum_{s \in S} x^s \right)^k \left( \sum_{s \in S} s x^{s-1} \right)^r

References

Bényi, Méndez, Ramirez: GENERALIZED ORDERED SET PARTITIONS

Comments

Loading comments...