← Back to the home page{nk} is the number of ways of partitioning an n element set into k subsets.
A008277 on the OEIS
{kn}=k!1i=0∑k(−1)k−i(ik)in=i=0∑k(k−i)!i!(−1)k−iin
- {nn}=1 for n≥0
- {0n}={k0}=0 for n,k>0
- {kn+1}=k{kn}+{k−1n} for 0<k<n
- k=0∑n{kn}(x)k=xn
- {n−1n}=(2n)
- {2n}=2n−1−1
- {k+1n+1}=j=k∑n(jn){kj}
- {k+1n+1}=j=k∑n(k+1)n−j{kj}
- {kn+k+1}=j=0∑kj{jn+j}
- {ℓ+mn}(ℓℓ+m)=k∑{ℓk}{mn−k}(kn)
n=k∑∞{nk}n!xn=k!(ex−1)kWikipedia
Comments
Loading comments...