← Back to the home page

Stirling numbers of the second kind

{nk}\left\{\begin{matrix}n\\k\end{matrix}\right\} is the number of ways of partitioning an nn element set into kk subsets.

A008277 on the OEIS

Formulas

{nk}=1k!i=0k(1)ki(ki)in=i=0k(1)kiin(ki)!i!\left\{ {n \atop k}\right\} = \frac{1}{k!}\sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n = \sum_{i=0}^k \frac{(-1)^{k-i} i^n}{(k-i)!i!}

Recurrence

Identities

Generating Function

n=k{nk}xnn!=(ex1)kk!\sum_{n=k}^\infty \left\{ \begin{array}{c} n \\ k \end{array} \right\} \frac{x^n}{n!} = \frac{(e^x - 1)^k}{k!}

References

Wikipedia

Comments

Loading comments...