Stirling Numbers of the Second Kind
{nk}
or S(n, k)
is the number of ways of partitioning an n element set into k subsets.
A008277 on the OEIS
Basic Recurrence
{nn}=1 for n≥0
{0n}={k0}=0 for n,k>0
{kn+1}=k{kn}+{k−1n} for 0<k<n
{kn}=k!1i=0∑k(−1)k−i(ik)in=i=0∑k(k−i)!i!(−1)k−iin
Identities
k=0∑n{kn}(x)k=xn
{n−1n}=(2n)
{2n}=2n−1−1
{k+1n+1}=j=k∑n(jn){kj}
{k+1n+1}=j=k∑n(k+1)n−j{kj}
{kn+k+1}=j=0∑kj{jn+j}
{ℓ+mn}(ℓℓ+m)=k∑{ℓk}{mn−k}(kn)
Generating functions
See Wikipedia
Associated Stirling Numbers
Restricted Stirling Numbers
Bell Numbers