<-- Back to the home page

Reduced Stirling numbers of the second kind

Sd(n,k)S^d(n, k)

is the number of ways of partitioning the set {1,2,...,n}\{1, 2, ..., n\} into kk subsets such that in each subset, elements have pairwise distance at least dd.

The case d=1d = 1 gives the regular Stirling numbers of the second kind.

Recurrence

Sd(1,1)=1S^d(1, 1) = 1

Sd(1,0)=0 for n2S^d(1, 0) = 0 \text{ for } n \geq 2

Sd(n,k)=0 for knS^d(n, k) = 0 \text{ for } k \geq n

Sd(n,k)=Sd(n1,k1)+(kd+1)Sd(n1,k) for nkdS^d(n, k) = S^d(n-1, k-1) + (k - d + 1) * S^d(n-1, k) \text{ for } n \geq k \geq d

Formula

Sd(n,k)=S(nd+1,kd+1) for nkdS^d(n, k) = S(n - d + 1, k - d + 1) \text{ for } n \geq k \geq d

where S(n,k)S(n, k) is a regular Stirling number of the second kind.

Articles

Applications of Chromatic Polynomials Involving Stirling Numbers